49 resultados para Parasites.

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is now considerable evidence that female choice drives the evolution of song complexity in many songbird species. However, the underlying basis for such choice remains controversial. The developmental stress hypothesis suggests that early developmental conditions can mediate adult song complexity by perturbing investment in the underlying brain nuclei during their initial growth. Here, we show that adult male canaries (Serinus canaria), infected with malaria (Plasmodium relictum) as juveniles, develop simpler songs as adults compared to uninfected individuals, and exhibit reduced development of the high vocal centre (HVC) song nucleus in the brain. Our results show how developmental stress not only affects the expression of a sexually selected male trait, but also the structure of the underlying song control pathway in the brain, providing a direct link between brain and behaviour. This novel experimental evidence tests both proximate and ultimate reasons for the evolution of complex songs and supports the Hamilton–Zuk hypothesis of parasite-mediated sexual selection. Together, these results propose how developmental costs may help to explain the evolution of honest advertising in the complex songs of birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques for targeted genetic disruption in Plasmodium, the causative agent of malaria, are currently intractable for those genes that are essential for blood stage development. The ability to use RNA interference (RNAi) to silence gene expression
would provide a powerful means to gain valuable insight into the pathogenic blood stages but its functionality in Plasmodium remains controversial. Here we have used various RNA-based gene silencing approaches to test the utility of RNAi in malaria
parasites and have undertaken an extensive comparative genomics search using profile hidden Markov models to clarify whether RNAi machinery
exists in malaria. These investigative approaches revealed that Plasmodium lacks the enzymology required for RNAi-based ablation of gene expression
and indeed no experimental evidence for RNAi was observed. In its absence, the most likely explanations for previously reported RNAi-mediated knockdown are either the general toxicity of introduced RNA (with global down-regulation of gene expression) or a specific antisense effect mechanistically distinct from RNAi, which will need systematic
analysis if it is to be of use as a molecular genetic tool for malaria parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to survive and promote its virulence the malaria parasite must export hundreds of its proteins beyond an encasing vacuole and membrane into the host red blood cell. In the last few years, several major advances have been made that have significantly contributed to our understanding of this export process. These include: (i) the identification of sequences that direct protein export (a signal sequence and a motif termed PEXEL), which have allowed predictions of the exportomes of Plasmodium species that are the cause of malaria, (ii) the recognition that the fate of proteins destined for export is already decided within the parasite's endoplasmic reticulum and involves the PEXEL motif being recognized and cleaved by the aspartic protease plasmepsin V and (iii) the discovery of the Plasmodium translocon of exported proteins (PTEX) that is responsible for the passage of proteins across the vacuolar membrane. We review protein export in Plasmodium and these latest developments in the field that have now provided a new platform from which trafficking of malaria proteins can be dissected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is somewhat paradoxical that the malaria parasite’s survival strategy involves spending almost all of its blood-stage existence residing behind a two-membrane barrier in a host red blood cell, yet giving considerable attention to exporting parasite-encoded proteins back across these membranes. These exported proteins are thought to play diverse roles and are crucial in pathogenic processes, such as re-modelling of the erythrocyte cytoskeleton and mediating the export of a major virulence protein known as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), and in metabolic processes such as nutrient uptake and solute exchange. Despite these varied roles most exported proteins have at least one common link; they share a trafficking pathway that begins with entry into the endoplasmic reticulum and concludes with passage across the vacuole membrane via a proteinaceous translocon known as the Plasmodium translocon of exported proteins (PTEX). In this commentary we review recent advances in our understanding of this export pathway and suggest several models by which different aspects of the process may be interconnected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to analyze gene function in malaria-causing Plasmodium parasites has received a boost with a recent paper in BMC Genomics that describes a genome-wide mutagenesis system in the rodent malaria species Plasmodium berghei using the transposon piggyBac. This advance holds promise for identifying and validating new targets for intervention against malaria. But further improvements are still needed for the full power of genome-wide molecular genetic screens to be utilized in this organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Zealand has a higher reported incidence of cryptosporidiosis and giardiasis than most other developed countries. This study aimed to describe and compare the epidemiology of these infections in New Zealand, to better understand their impact on public health and to gain insight into their probable modes of transmission. We analysed cryptosporidiosis and giardiasis notification data for a 10-year period (1997–2006). Highest rates for both diseases were in Europeans, children aged 0–5 years, and those living in low-deprivation areas. Cryptosporidiosis distribution was consistent with mainly farm animal (zoonotic) reservoirs. There was a dose–response relationship with increasing grades of rurality, marked spring seasonality, and positive correlation with farm animal density. Giardiasis distribution was consistent with predominantly human (anthroponotic) reservoirs, with an important contribution from overseas travel. Further research should focus on methods to reduce transmission of Cryptosporidium in rural areas and on reducing anthroponotic transmission of Giardia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the blood stages of malaria, several hundred parasite-encoded proteins are exported beyond the double-membrane barrier that separates the parasite from the host cell cytosol. These proteins have a variety of roles that are essential to virulence or parasite growth. There is keen interest in understanding how proteins are exported and whether common machineries are involved in trafficking the different classes of exported proteins. One potential trafficking machine is a protein complex known as the Plasmodium translocon of exported proteins (PTEX). Although PTEX has been linked to the export of one class of exported proteins, there has been no direct evidence for its role and scope in protein translocation. Here we show, through the generation of two parasite lines defective for essential PTEX components (HSP101 or PTEX150), and analysis of a line lacking the non-essential component TRX2 (ref. 12), greatly reduced trafficking of all classes of exported proteins beyond the double membrane barrier enveloping the parasite. This includes proteins containing the PEXEL motif (RxLxE/Q/D) and PEXEL-negative exported proteins (PNEPs). Moreover, the export of proteins destined for expression on the infected erythrocyte surface, including the major virulence factor PfEMP1 in Plasmodium falciparum, was significantly reduced in PTEX knockdown parasites. PTEX function was also essential for blood-stage growth, because even a modest knockdown of PTEX components had a strong effect on the parasite's capacity to complete the erythrocytic cycle both in vitro and in vivo. Hence, as the only known nexus for protein export in Plasmodium parasites, and an essential enzymic machine, PTEX is a prime drug target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine repeat antigens (SERAs) are a family of secreted “cysteine-like” proteases of Plasmodium parasites. Several SERAs possess an atypical active-site serine residue in place of the canonical cysteine. The human malaria parasite Plasmodium falciparum possesses six “serine-type” (SERA1 to SERA5 and SERA9) and three “cysteine-type” (SERA6 to SERA8) SERAs. Here, we investigate the importance of the serine-type SERAs to blood-stage parasite development and examine the extent of functional redundancy among this group. We attempted to knock out the four P. falciparum serine-type SERA genes that have not been disrupted previously. SERA1, SERA4, and SERA9 knockout lines were generated, while only SERA5, the most strongly expressed member of the SERA family, remained refractory to genetic deletion. Interestingly, we discovered that while SERA4-null parasites completed the blood-stage cycle normally, they exhibited a twofold increase in the level of SERA5 mRNA. The inability to disrupt SERA5 and the apparent compensatory increase in SERA5 expression in response to the deletion of SERA4 provides evidence for an important blood-stage function for the serine-type SERAs and supports the notion of functional redundancy among this group. Such redundancy is consistent with our phylogenetic analysis, which reveals a monophyletic grouping of the serine-type SERAs across the genus Plasmodium and a predominance of postspeciation expansion. While SERA5 is to some extent further validated as a target for vaccine and drug development, our data suggest that the expression level of other serine-type SERAs is the only barrier to escape from anti-SERA5-specific interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide variation in a portion of the mitochondrial cytochrome c oxidase subunit1 (cox1) gene from asexual stages of bucephalids of southern Australian scallops (Chlamys asperrima, Chlamys bifrons and Pecten fumatus) was investigated using a mutation scanning–sequencing approach. Single-strand conformation polymorphism (SSCP) analysis revealed three main profile types (A, B and C) for parasites isolated from scallops. Sequence analysis revealed that samples represented by profiles B and C had a high degree (97.3%) of sequence similarity, whereas they were ~21% different in sequence from those represented by profile A. These findings suggested that at least two types or species (represented by profile A, or profile B or C) of bucephalid infect scallops, of which both were detected in South Australia, while only one was found in Victoria. The prevalence of bucephalids (and their SSCP haplotypes) appeared to differ among the three species of scallop in South Australia as well as between the two scallop species in Victoria, indicating a degree of host specificity. Adult bucephalids were collected from Eastern Australian Salmon (Arripis trutta), in an attempt to match them with the asexual stages from the scallop hosts. Neither of the two taxa of adult bucephalid (Telorhynchus arripidis and an un-named Telorhynchus species) shared SSCP profiles with the bucephalids from scallops, but were genetically similar, suggesting that the asexual stages from scallops may represent the genus Telorhynchus. This study, which assessed nucleotide sequence variation in a portion of the mitochondrial cox1 gene for bucephalids found in scallops and arripid fish, illustrates the usefulness of the mutation scanning approach to elucidate complex life-cycles of marine parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although CD8+ T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8+ T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8+ T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P. berghei parasites expressing model T cell epitopes. This approach was necessary as MHC class I-restricted antigens to blood-stage infection have not been defined. Here, we show that blood-stage infection leads to parasite-specific CD8+ and CD4+ T cell responses. Furthermore, we show that P. berghei-expressed antigens are cross-presented by the CD8α+ subset of dendritic cells (DC), and that this induces pathogen-specific cytotoxic T lymphocytes (CTL) capable of lysing cells presenting antigens expressed by blood-stage parasites. Finally, using three different experimental approaches, we provide evidence that CTL specific for parasite-expressed antigens contribute to ECM.